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Egypt is currently witnessing an extensive desert greening plan with a target of adding one and a half million feddans to the
agricultural area. 'e present study evaluates the soil quality in the western desert fringes of the Nile Delta using three indicator
datasets, which involve the total dataset (TDS), the minimum dataset (MDS), and the expert dataset (EDS). 'ree quality index
models are included: the Additive Soil Quality Index (SQI-A), the Weighted Additive Soil Quality Index (SQI-W), and the
Nemoro Soil Quality Index (SQI-N). Linear and nonlinear scoring functions are evaluated for scoring soil and terrain indicators.
'irteen soil quality indicators and three terrain indicators were measured in 397 sampling sites for soil quality evaluation. Factor
analyses determined five soil and terrain indicators for the minimum dataset and their associated weights. 'e linear scoring
functions reflected the soil system functions more than nonlinear scoring functions. Soil quality estimation by the minimum
dataset (MDS) andWeighted Additive Soil Quality Index (SQI-W) is more sensitive than that by SQI-A and SQI-N quality models
to explain soil quality indicators. 'e moderate soil quality grade is the largest quality grade in the studied area. 'e minimum
dataset of soil quality indicators could assist in reducing time and cost of evaluating soil quality and monitoring the temporal
changes in soil quality of the region due to the increased agricultural development.

1. Introduction

Soil is considered one of the most important natural re-
sources for countries where the foundations of human life
are mainly based on their suitability for agriculture as well as
other anthropogenic activities [1]. In the Eastern Mediter-
ranean, the Egyptian civilization has sustained in the fertile
Nile Valley and the Nile Delta, in which the elements of
sustainability are available [2]. During the past century, there
has been a serious deterioration in the productive capacity of
more than 10% of the world’s lands, which increased the
interest in assessing soil health at the regional level [3].
Assessment of soil quality is necessary to assist farmers in
evaluating the effects of their management decisions on soil

productivity [4, 5]. 'e study in [6] emphasized that soil
qualitative evaluation, despite its simplicity and speed, re-
quires very high experience. Accurate assessment of soil
quality is complex due to the lack of consistency in soil
characteristics [7–10] and the different soil management
practices such as adding organic and mineral fertilizers,
herbicides, and pesticides, which make the soil assessment
more difficult [9]. Soil quality indicators are evaluated using
different descriptive and quantitative approaches [6, 11–13].
'e concept of soil quality is more comprehensive than the
reductive approach of measuring a single indicator [14].
Basically, soil quality indices have three component targets
as the environmental quality, agronomic sustainability, and
socioeconomic feasibility [15]. 'erefore, the estimation of
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soil quality indices is a complicated process and quite a hard
mission [16]. Recently, several techniques have been suc-
cessfully utilized for evaluating soil quality such as spec-
troscopy fingerprint [17], the Soil Management Assessment
Framework (SMAF) [18], and spatial variability of physi-
cochemical soil properties [19]. Most researchers estimated
soil quality using only one technique with some exclusion
[17–21]. Principal component analysis (PCA) and linear
regression coefficients are also widely used for minimizing
the number of soil variables included in estimating soil
quality [21]. Recent studies attempted to develop appro-
priate algorithms and scoring functions for determining soil
quality [22] by comparing multiple soil quality scoring
techniques [15, 23, 24].

To overcome the financial constraints, the amount of soil
quality indicators needs to be reduced to a minimum dataset
(MDS) [25, 26]. 'e concept of minimum datasets was
proposed in [27], which is the lowest set of soil quality
indicators required to measure or evaluate soil quality to
demonstrate the soil’s capacity for sustainable agricultural
production. Recent soil quality studies preferred the mini-
mum dataset (MDS) approach [28–30], where the MDS was
favorable for detecting yield variations than the total dataset
approach [31]. Additionally, the MDS approach is an ef-
fective tool for identifying the status of soil nutrients at the
regional level [32]. 'e limitation factors of soil quality vary
based on the soil topography, land use, climatic zone, the
regional soil ecosystem, and the soil geological units [33, 34].

By establishing the MDS, it is easy to select the most
effective indicators to determine soil quality determined
based on its ability to estimate soil productivity and soil
stability, and this indicator has been widely used [35–37].
Based on MDS indicators, the abundance of soil data can be
minimized [10, 35]. Furthermore, the weight of chosen
factors can be estimated while establishing the minimum
datasets, thus minimizing the internal influence [37]. 'e
MDS can be determined by linear or multiple regression
factor analysis [38], multivariate statistical techniques
[9, 37], discriminant analysis, and score function [34]. Since
factor analysis can minimize abundant input data in the
original soil datasets, it is widely utilized in the limitation of
the MDS [28, 39]. Factor analysis statistical techniques can
identify the most important indicators discriminating soil
quality in combined tillage, fertilization, and crop rotation
treatments [28]. In Egypt, recent researchers evaluated soil
quality in the Nile Delta and El-Fayoum depression [40–42].

As the calculation of soil quality is hard [4], an urgent
need exists for improving the simple and reliable quanti-
tative evaluation of soil quality through comparison of
various available assessment strategies and methods. 'us,
this study attempts to examine the soil quality in the arid
region along the desert western fringes of the Nile Delta by
(i) assessing the soil quality using three types of indicator
datasets (TDS, MDS, and EDS), three types of linear scoring
functions, two types of nonlinear scoring functions, and
three soil quality index models (additive, weighted additive,
and Nemoro quality indices); (ii) suggesting the most
suitable indicator method and soil quality index model for
the studied region using sensitivity analysis and linear

relationships. 'e findings of the study have a significant
value for assessing the soil quality in the rapidly developing
area for sustainable management.

2. Materials and Methods

2.1. FieldDescriptionof theStudyArea. 'e evaluated area is
located in Wadi El Natrun district, El Beheira Gover-
norate, at the western fringes of the Nile Delta between
29°54′00″E–30°20′00″E and latitudes of 30°22′00″N–30°
00′00″N (Figure 1). 'e evaluated area covers an area of
1600 km2 (380000 feddan), with a landscape consisting of
Wadi terraces and Wadi depressions with longitudinal
sand dunes at the southern edge of the area [43]. 'e
annual evaporation rate is about 114.3 mm/y, the average
air temperature is 21°C, and the area has a rarely annual
precipitation rate with an average of 41.4 mm/y [44] with
an erratic distribution. Based on the work in [45], the soil
temperature regime is “'ermic” and the moisture re-
gime is “Torric.” Two soil orders are dominant in the area,
Entisols and Aridisols. 'e evaluated area has been
reclaimed during the last two decades and is cultivated
with diverse kinds of fruits and vegetables [46]. 'is kind
of cultivation is usually associated with an increase of
underground water irrigation, and the ongoing climate
change put a threat on the soil quality and sustainable
agriculture that reduces the economic value of the lands
[47, 48]. Additionally, the excessive extraction of
groundwater for irrigation resulted in land subsidence,
which could also affect the integrity of the soil profiles in
the area [49].

2.2. Data Collection

2.2.1. Indicator Sampling Design. 'e required samples size
needed for soil quality assessment was determined by using
the binomial probability algorithm [50]. 397 sampling sites
were chosen. A Proportionate Stratified Random (PSR)
sampling technique was used as the sampling type for soil
and terrain sampling based on land cover and land use
distribution in the evaluated area. 'e sampling locations
were georeferenced (Figure 1) using the Global Positioning
System (GPS).

2.2.2. Sampling and Analyses. 'e soil sampling was carried
out according to the sampling design. However, some
sampling sites were displaced by other sampling sites near
the designed sampling locations due to accessibility diffi-
culties, and some certain areas were currently restricted for
access, also the presence of elongated sand dunes at the south
of the study area. 'ese accessibility limitations resulted in
ununiform spatial sampling distribution.

Disturbed and undisturbed samples were collected to the
depth of the root zone (30 cm) and described according to the
work in [51]. Soil samples were crumbled gently by hand
without root material and were air dried, grounded, and sieved
through a 2mm sieve. Soil chemical analysis, including pH in 1 :
2.5 soil-water suspension, electrical conductivity (EC) in soil
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paste extract, cation exchange capacity (CEC), exchangeable
sodium percentage (ESP), organic matter (OM), and calcium
carbonate were determined according to standard methods of
[52]. Soil physical analyses, including particle size distribution
using the pipette method, bulk density (BD) using a core
method, available water holding capacity (AWHC), and field
capacity (FC), were performed according to the work in [53].
Soil packing density (PD)was estimated as a composite index of
soil bulk density and soil clay content according to the work in
[54].

Terrain analyses were performed on a shuttle radar to-
pography mission (SRTM) 1-arc-second v.30 image [55] to
obtain some surface parametric information (elevation, slope,
relief intensity, and topographic witness index) [56]. 'e DEM
image was firstly sink filled using depression filling algorithm
[57].'e slope (Slp) and topographic witness index (TWI) were
extracted [58, 59]. 'e extraction of relief intensity (Rlf) was
based on the algorithm described in [60].

'e Normalized Difference Vegetation Index (NDVI)
and elevation data were used as exterior environmental
variables in the process of representative indicator selection
and redundancy reduction. NDVI data were retrieved from
the Landsat Data Continuity Mission (LDCM) sensor
multiband dataset using the NDVI equation ([61, 62]).

All of the datasets were projected into the WGS84-based
Universal Transverse Mercator (UTM) orthographic pro-
jection coordinate system (EPSG 32636) and resampled to a
30m spatial resolution.

2.3. Indicator Selection and Scaling. 'ree datasets of quality
indicators were chosen, the total dataset (TDS), minimum
dataset (MDS), and expert opinion dataset (EDS). 'e total

dataset (TDS) includes all soil and terrain indicators for soil
quality index development. 'e soil and terrain indicators for
the minimum dataset were determined according to multi-
variate factor analysis. Factor analysis reduces the dimension
of data while minimizing the loss of information [63]. For the
expert opinion dataset (EDS), the authors of the current study
selected the soil and terrain indicators for the EDS considering
the arid climatic characteristics coupled with low annual
perception rate and the associated pedogenic soil processes
which plays a major role in forming of soil properties, the
gathered knowledge of the evaluated area about the cost of
sampling, environmental functions, management practices,
vulnerability to productivity, and previous literature recom-
mendations [5, 25, 64–66]. 'e EDS includes soil electrical
conductivity (EC), soil organic matter content (OM), calcium
carbonate content (CaCO3), available water holding capacity
(AWHC), soil packing density (PD), and topographic witness
index (TWI).

'e soil quality indicators were rescaled to a Z-score with
standard normal distribution where they are centered
around a mean of zero (0) and standard deviation of 1 as the
indicators are of different measurement units and scales.'e
Z-score standardization ensures that the indicators have an
equal order of magnitude [67].

2.4. Minimum Dataset (MDS) Formulation. A minimum
dataset (MDS) of soil and terrain indicators was selected
from the indicator dataset through multivariate statistical
analysis. 'e minimum dataset selection process includes
two steps: representative indicators selection and indicator
redundancy reduction. Representative indicators were se-
lected by applying multivariate factor analysis, and the
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Figure 1: Location of the study area and soil sampling sites.
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redundant indicators were reduced by vector norm (Norm)
analysis.

Factor analyses were performed with the covariance matrix
of the raw soil and terrain indicators values using principal axis
as a factoring method, diagonals equal to 1 as prior com-
munality, and unrotated factor loadings for model parameters.
'e total dataset includes sand, silt, clay, pH, EC, OM, ESP,
CEC, CaCO3, FC, AWHC, BD, PD, Slp, Rlf, and TWI.

'e raw soil and terrain indicator covariance revealed that
the first nine principal components (PCs) account for 0.99% of
the total variance of soil and terrain indicators data. 'e first
principal component explains only about 58% of the total
variance of soil and terrain indicators, while the second
principal components explain about 19% of the total variance.
For the other principal components, the contributing indica-
tors were of lowering contribution with a minimum of r� 0.30.

Due to the difference in soil and terrain indicator units of
measurements and scales and other than the first and second
principal components, the remaining principal components
explain only about 23% of the total variability of soil and terrain
indicators. 'is led to the inadequacy of the covariance ana-
lyses, and therefore, factor analyses were recomputed based on
the correlation matrix of the standardized soil and terrain
indicator values where each indicator has a mean centered
around zero (0) and standard deviation of unit variance with
total variance equal to the number of indicators. Varimax
rotation was performed to maximize the relationship between
factors and indicators as each indicator has either a small or
large loading on each factor [68]. Only factors with eigenvalues
more than one were retained as they explain variation in the
indicators and not the other factors [69]. For each factor based
on the previous criteria, the indicators which contribute with
highly weighted factor loadings (within 10% of highest factor
loading or absolute value> 0.85) were identified and retained
for the minimum dataset (MDS).

An indicator value for each representative indicator was
calculated, if there were more than one indicator for a single
factor to reduce redundancy and exclude pseudo-indicator
grouping. At first, for each factor, the soil and terrain in-
dicators that have a factor loading more than or equal to 0.5
were grouped into one group. Any indicator that has all
factor loads in the different factor that is more or equal to 0.5
was grouped with the smallest correlations with other in-
dicators. If there is a correlation coefficient less than 0.3
between any indicator and the other indicators, the indicator
is placed in another separate group.

'e factor loadings for selecting soil and terrain indicators
for the minimum dataset are not enough as they may ignore
some important indicators as the eigenvectors do not express
the magnitude (norm) of the resulting factor vectors or for the
original indicators [70]. 'erefore, for each representative soil
and terrain indicator, a vector norm value which represents the
magnitude of the vector representing the indicator was cal-
culated [21, 70, 71] according to the following equation:

Ni �

������



k

j�1
μ2ijλi




, (1)

where Ni is the combined factor load of indicator i in all
factors with eigenvalues≥ 1, uij is the factor load of indicator
i in factor j, and λj is the eigenvalue of factor j.

Secondly, a regression coefficient of determination (R2)
was calculated for each pair of the exterior environmental
variables with each of soil and terrain indicators as soil
quality influenced by the interior properties and the exterior
environment variables [72]. 'e indicator value was cal-
culated by employing a standard transformation function
sum to the vector norm of each indicator with the coefficient
of determination R2 for that indicator with the exterior
environment variables.

2.5. Indicator Weighting. For soil quality index (SQI) for-
mulation, soil and terrain indicators of the three datasets
(TDS, MDS, and EDS) were weighted. Each soil and terrain
indicator of the total dataset (TDS) and expert opinion
dataset (EDS) weighted by calculating the ratio of its re-
spective indicator’s communality resulted from factor
analysis and the total indicator communality summation for
the dataset [36, 73]. For the minimum dataset (MDS), each
indicator was weighted by determining the variation of each
respective factor, normalized to unity to the common factor
variance summation for the minimum dataset [15] as
follows:

Iwmds �
vijmds


k
i�1 vjmds

, (2)

where Iwmds is the weight for the minimum dataset indi-
cator, vijmds

is the variance of the indicator I for factor j, and
vjmds

is the common factor variance of the minimum dataset
indicator.

2.6. Indicator Scoring Functions. 'e soil and terrain in-
dicators are of different measurement units and scales,
though there is a need for a normalized transformation of
soil and terrain indicator measured values to a unitless
score ranging from a zero to one scale [15]. 'e scoring of
indicators provides the capability of combining and av-
eraging the scores into a single value nonlimiting to the
pertinent soil functions and processes [74] and to capture
information that might otherwise go undetected when
examining only the observed values [75]. Linear and
nonlinear scoring functions were widely used for quality
indicator scoring [15, 76–78].

'e indicator scoring function relies on critical
threshold values which are soil property values deter-
mining the upper limit (threshold) where the indicator
score is at the most preferable level (score � 1), the lower
limit (lower threshold) where the indicator score is at the
inadmissible level, and baseline values (minimum target
thresholds) where the scoring function equals 0.5 at the
lower and upper target thresholds for soil property values
[79–82]. 'e critical threshold values for normalizing
indicators values (Table 1) were determined based on the
measured values of soil and quality indicators, expert
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knowledge for the natural ecosystem of the evaluated area,
and guidance of the previous literature [80–90].

'e soil and terrain indicator datasets (TDS, MDS,
and EDS) were scored by transforming data values using
linear and nonlinear scoring techniques as described
below.

2.6.1. Linear Scoring Functions. 'ree linear scoring func-
tions (LSFs) were identified and evaluated for scoring soil
and terrain indicators: Leibig Linear Scoring Function
(LLSF), Homothetic Linear Scoring Function (HLSF), and
Glover Linear Scoring Function (GLSF).

'e soil and terrain indicators were scored according to
Liebig scoring function [77] into two orders in terms of soil
function: ascending order which is more is better and
descending order which is “less is better.” In the ascending
order “more is better order,” the indicator value was divided
by the maximum indicator values where it is equal to one
score (equation (3)). In the descending order “less is better,”
the minimum indicator value was divided by the indicator
value where the indicator minimum value is equal to one
score (equation (4)).

LLSF Ym(  �
x

xmax
, (3)

LLSF Yl(  �
xmin

x
, (4)

where X is the indicator value and Xmin and Xmax are the
minimum and maximum value of each indicator,
respectively.

'e soil and terrain indicators were scored using a
homothetic scoring function [15, 24, 91]. 'ree types of
homothetic scoring functions were used for standardizing
the quality indicators to a score value ranging between zero
and one: S scoring function (HLSF3), reverse scoring
function (HLFS9), and parabola scoring function (HLSF5)
[73, 76, 79–82]. For the ascending order “more is better,”
HLSF3 scoring function was applied (equation (5)), for “less
is better,” HLSF9 scoring function was applied (equation
(7)), and for “optimum,” where the indicator value scored as
“more is better” until a critical threshold value where it is
assigned “less is better,” HLSF5 scoring function was applied
(equation (6)).

'e standard scoring functions (SSFs) are defined as
follows:

HLSF3: f(x) �

0.1, x≤L,

0.1 +
0.9 (x − L)

U − L
, L≤ x≤U,

1.0, x≥U,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

HLSF5: f(x) �

0.1, x<L, x>U,

0.1 +
0.9 (x − L)

U − L
, L≤x<L1,

1 −
0.9 (x − L)

U − L
, U1 <x≤U,

1.0, L1 <x<U1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Table 1: Soil quality scoring functions (SSFs) and thresholds values for soil and terrain quality indicators.

Indicator SSF
'resholds

B O L1 U1 S Sources
L U

Sand SSF5 0 60 — 35 30 50 0.440 [89]
Silt SSF3 0 25 10 — — — 0.249 [89]
Clay SSF3 0 30 15 — — — 0.268 [89]
pH SSF5 4.5 9.5 — 7.00 6.5 7.7 1.301 [3, 75, 83, 84, 90, 96, 97]
ECa,b SSF5 0.0 2 — 1 0.25 1.75 2.234 [84, 90, 96, 97]
OMa,b SSF3 0.2 2 1 — — — 1.049 [36, 86, 96–98]
ESP SSF9 2 15 5 — — — 2.50 [15, 39, 66, 99–101]
CECa SSF3 0 21 10.5 — — — 0.245 [36, 82, 89, 96, 102, 103]
CaCO3

b SSF9 1 8 3 — — — 2.50 NE, EO
FC SSF3 15 25 20 — — — −2.50 NE, EO
AWHCa,b SSF3 2 10 4 — — — 0.198 [80, 85]; NE

BD SSF9 1.00 2.0 1.50 — — — −2.62
–0.323 [104, 105]

PDb SSF9 1.00 1.50 1.2 — — — 2.50 [81, 97, 106, 107]
Slpa SSF9 2.00 4.00 3.00 — — — 2.50 NE, EO
Rlf SSF9 3 10 5 — — — 2.50 NE, EO
TWIb SSF9 5 15 10 — — — 2.50 NE, EO
aSelected soil and terrain indicators based on the minimum dataset (MDS) from factor analysis. bSelected soil and terrain indicators chosen by expert opinion
based on the natural ecosystem. NE: natural ecosystem, EO: expert opinion. For SSF3: L, lower threshold, at which or below the score is 0; B, baseline, at which
score is 0.5; U, upper threshold, at which or above score is 1.0. For SSF5: L, lower threshold, at which or below the score is 0; L1, lower baseline is 0.5 with bell-
shaped relationship; O, optimum level, at which score is 1.0; U1, upper baseline is 0.5 with bell-shaped relationship; and U, upper threshold, at which or above
score is 0. For SSF9: L, lower threshold, at which or below the score is 1; B, baseline, at which score is 0.5; and U, upper threshold, at which or above score is 0. S,
slope at baseline for nonlinear scoring functions.
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HLSF9: f(x) �

1.0, x≤L,

1 −
0.9 (x − L)

U − L
, L≤x≤U,

0.1, x≥U,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where f(x) is the scoring function and x is the soil
property value. For SSF3: L- lower threshold and U- upper
threshold. For SSF5: L- lower threshold and L1- lower
baseline is 0.5 with a bell-shaped relationship; U1- upper
baseline is 0.5 with a bell-shaped relationship; and
U- upper threshold. For SSF9: L- lower threshold and U-
upper threshold.

'e soil and terrain indicators were scored using Glover
linear scoring function [82, 87, 88]. 'e quality indicators
were scored into two orders in terms of soil function: as-
cending order which is more is better and descending order
which is “less is better.” In the ascending order “more is
better order,” equation (8) was used for scoring, and for the
descending order “less is better,” equation (9) was used,
while for the values outside the lower and upper thresholds,
the indicator scored as zero. A combination of both “more is
better” and “less is better” was used for the “optimum is
better” soil function.

GLSF Ym(  �
x − s

t − s
, (8)

GLSF Yl(  � 1 −
x − s

t − s
, (9)

where Ym is the linear score for “more is better,” Yl is the
linear score for “less is better,” x is the indicator value, and s
and t are lower and upper threshold values.

2.6.2. Nonlinear Scoring Function (NLSF). Two nonlinear
scoring functions (NLSFs) were identified and evaluated for
scoring soil and terrain indicators: Sigmoid Nonlinear
Scoring Function (SNLSF) and Glover Nonlinear Scoring
Function (GNLSF).

'e soil and terrain indicators were scored using sigmoid
nonlinear scoring function [88, 92, 93]. 'e used sigmoid
function for indicator scoring was the logistic nonlinear
curve equation (equation (10)) where it is characterized as an
S-shaped curve [94]. 'e scores of the sigmoid function are
between zero and one.

SNSLF (Y) �
a

1 + x/xo( 
b
, (10)

where Y is the nonlinear score of the indicator value, a is
the maximum score, x is the indicator value, xo is the
mean value of the indicator, and b is the slope of the
curve.

'e soil and terrain indicators were scored using Glover
nonlinear scoring function [82, 87, 88] (equation (11)).
'ree types of GNLSF scoring were applied: the “more is
better” scoring curve for positive slopes, “less is better”
scoring curve for negative slopes, and a combination of
“Optimum” curve defined by the combination of both “more

is better” and “less is better” was used for “optimum is
better” soil function [81, 82, 95].

GNSLF (Y) �
1

1 + e
− b(x− A)

, (11)

where Y is the nonlinear score of the indicator value, x is the
indicator value, A is the baseline value where the indicator
score equals 0.5, and b is the slope.

2.7. Soil Quality Index Development. 'ree soil quality
indexing methods were computed: the Additive Soil Quality
Index (SQI-A), Weighted Additive Soil Quality Index
(SQI-W), and Nemoro Soil Quality Index (SQI-N). Each soil
quality method was applied for each soil quality indicator
dataset.

In the Additive Soil Quality Index (SQI-A), the scores of
the quality indicators were summed and divided by the
dataset number of indicators [15, 108].

SQI − A �


n
i�1 Si

n
, (12)

where SQI-A is the soil quality index, Si is the linear or
nonlinear indicator score value, and n is the number of
indicators of the dataset.

For the Weighted Additive Soil Quality Index (SQI-W),
the score of each indicator was multiplied by the indicator
weight and summed ([64, 78, 83]).

SQI − W � 
n

i�1
WiSi, (13)

where SQI-W is the weighted additive soil quality index,
Wi is the indicator weight, Si is the linear or nonlinear
indicator score value, and n is the number of indicators of
the dataset.

'e Nemoro Soil Quality Index (SQI-N) was calculated
according to the indicator’s minimum and average scores
[108–110].

SQI − N �

����������

S
2
iave + S

2
imin

2



×
n − 1

n
, (14)

where SQI-N is the soil quality index, Siave is the indicator’s
score average, Simin is the linear or nonlinear indicator’s
score minimum, and n is the number of indicators of the
dataset.

2.8. Soil Quality Grade Classification. Each soil quality index
range was classified into grades by applying Jenks’s natural
breaks optimization method [111]. Jenks’s method is an
iterative clustering method for determining the best clus-
tering of values into different classes by reducing the vari-
ance within classes and maximizing the variance between
classes [112]. Five grades were determined for each soil
quality index: very high (grade I), high (grade II), moderate
(grade III), low (grade IV), and very low (grade V). 'e
grades are from the most suitable for plant growth to the
most severe for plant growth.
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2.9. Soil Quality Index Comparison and Sensitivity. Direct
comparison analyses of soil quality grades were used to
evaluate the indices’ performance by comparing the number
of sampling sites where the soil quality index and indicator
combinations had the same soil quality grade [36, 96, 108].
Soil quality indexing methods were also evaluated using
sensitivity analysis [88, 113] by computing the ratio between
the maximum and minimum soil quality index value for
each scoring function using each soil and terrain indicators
dataset selection methods. 'e soil quality indexing method
with the higher index value of sensitivity is more preferable
as this is sensitive to perplexity in management practices.
Also, the linear relationship between the soil quality indices
was examined by the correlation within indices, and the
regression relation within the indicator methods was
performed.

2.10. Soil Quality Index Spatial Distribution. 'e spatial
distributions of soil quality index grades were developed by
applying the Ordinary Kriging (OK) interpolation tech-
nique. For each soil quality index, the semivariogrammodels
were generated using the following model parameters:
model type, sill, range, and maximum and minimum
neighbors. Eleven model types (circular, spherical, tetra-
spherical, pentaspherical, exponential, Gaussian, rational
quadratic, hole effect, K-Bessel, J-Bessel, and stable) were
examined for predicting the spatial distribution of soil
quality indices. 'e accuracy of the predictive model is of
greater importance as it is shown howwell the spatial pattern
of variation can be represented [114]. 'e best fitting
semivariogram model with optimized parameters was se-
lected by incorporating the cross-validation technique to
obtain high interpolation accuracy. 'e cross-validation
technique ensures the same probability of being validated
against each data sample [115]. 'e output statistical pa-
rameters of the cross-validation technique determine the
best and highly accurate prediction model for mapping soil
quality indices [115].

2.11. Statistical Analyses. Soil indicators were examined for
outliers using Quantile Range Outliers statistic with (0.01,
0.05, 0.1, and 0.15) probabilities of the lower quantiles. 'e
normalities of all indicators were examined using the Kol-
mogorov–Smirnov test and visual examination of histo-
grams. 'e pH, OM, BD, and CEC data were log
transformed, EC was inverse transformed, and SAR, CCE,
and ESP were square-root transformed to reduce the skew of
their distributions. 'e relationship between soil and terrain
indicators was examined by the Pearson correlation coef-
ficient (r). Bartlett’s test of sphericity was conducted to
examine whether the correlation matrix of the soil and
terrain indicators is an orthogonal matrix or it diverges
significantly from the identity matrix and there is a degree of
redundancy between the indicators. 'e Kai-
ser–Meyer–Olkin Measure of Sampling Adequacy (MSA)
was conducted to indicate whether factor analysis is likely to
be appropriate and will gain distinct and reliable factors or
not appropriate. 'e results of Bartlett’s test and MSA will

verify if factor analyses can interpret the structure of data
and reduce the soil and terrain indicators to a minimum
dataset. 'e statistical and multivariate analyses were
performed using JMP pro 14 software for Windows
[68]. Scoring and indexing were performed using
Microsoft Excel software, ver. 2016 and geostatistical
interpolation and mapping using ArcGIS Desktop 10.8
software [116].

3. Results and Discussion

3.1. Soil and Terrain Indicator Characteristics. 'e soil and
terrain indicators related to soil quality were subjected to
descriptive analyses (Table 2). 'e quantile range outlier’s
statistic indicated no outliers existed in soil and terrain
indicator data. 'e elevation of the sampling sites ranged
between −19 and 197m above mean sea level. 'e Rlf,
sand, Slp, CaCO3, and clay indicators showed high data
dispersion indicating that the spatial variations of these
soil indicators are large, while the other soil and terrain
indicators are of weak spatial variation as they have low
data dispersion.

'e correlation analysis of soil physical and chemical
indicators and terrain indicators revealed that there is a
significant correlation in 35 of 136 soil and terrain in-
dicator correlation pairs at a significant level of p< 0.05
(Table 3). 'e highest positive correlations were between
soil clay content against soil field capacity, available water
holding capacity, and soil packing density where the
correlation coefficient is greater than 0.90. Also, the soil
field capacity indicated a high positive correlation co-
efficient (r > 0.95) with available water holding capacity
and soil packing density (r > 0.94). 'e highest negative
correlation coefficients were obtained between sand and
clay (r > 0.93), soil field capacity (r > 0.96), available water
holding capacity (r > 0.99), and soil packing density
(r > 0.93). It is also noted that soil organic matter indi-
cator (OM) has a moderate positive relationship with
CEC (0.45) and a moderate negative relationship with BD
(−0.54) while it has no significant relationship with the
soil salinity indicator (EC).

Bartlett’s test of sphericity revealed that the soil and
terrain indicator correlation coefficients are significantly
different than the identity correlation matrix (<0.05) and the
indicators are not perfectly uncorrelated. 'e Kai-
ser–Meyer–Olkin Measure of Sampling Adequacy (MSA)
revealed that the MSA value is above 0.6 and acceptable.'is
result of MSA indicates that there is a proportion of variance
in soil and terrain indicators that might be caused by un-
derlying factors. 'e Kaiser–Meyer–Olkin and Bartlett’s test
show that there is a high scope for data reduction with factor
analyzing where the pattern of data structure in indicators
can be interpreted.

3.2. Minimum Dataset Indicators. 'e analyses of the re-
lationship between soil and terrain indicators revealed that
there are noted redundancy and collinearity among indi-
cators and there is a need to establish a minimum dataset for
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the process of soil quality assessment by eliminating some
indicators performing factor analyses.

'e results of factor analyses on standardized soil and
terrain indicators values revealed that the first five factors
accounted for 78.76% of indicator variability with eigenvalue
greater than 1 (Table 4). 'us, the first five factor analyses
were retained and the other factors with eigenvalue less than
1 were excluded as the indicators may explain more variance
than those excluded factors [117].

'e retained factors explain more than 97% of the
variance for sand and AWHC in indicators (Table 5); more
than 91% for PD, FC, BD, and clay indicators; more than
71% for OM, CaCO3, Slp, CEC, pH, Rlf, and EC indicators;
and more than 55% for ESP and silt indicators. 'e TWI
indicator was the least important indicator due to its lowest
communality estimate (less than 28% variance) as the higher
communality estimates procure more preference upon the
lower ones.

'e representative soil and terrain indicators for soil
quality were chosen based on their relationship with the
retained factors as the eigenvalues were the criteria mag-
nitude for the interpretation (Table 5). In the first factor,
eight quality indicator factor loads are more than 0.7 which
are sand, silt, clay, pH, FC, AWHC, BD, and PD. In the
second factor, only the OM indicator is of high weight
variable accounting for 0.92 of variation. In the third factor,
slp and rlf indicators’ factor loads are of more than 0.85. CEC
and CaCO3 indicators are more than 0.67 in the fourth
factor. 'e fifth factor contains only EC and ESP indicator
factor loads of more than 0.79. 'e soil and terrain quality
indicators were grouped according to that criterion into five
groups (Table 6).

'e first factor explained about 41% of the total variance
with high positive loadings from AWHC, FC, clay, PD, and
BD indicators (>0.85) and high negative loading from the
sand indicator (−0.99). 'e moderate positive loadings were
from silt (0.74) and negative loading from pH (−0.74) in-
dicators.'e significant correlation coefficients among sand,
silt, clay, pH, FC, AWHC, BD, and PD indicators influenced
the factors’ loading values. 'e first factor expresses the
influence of soil texture on hydraulic soil properties as it
clarifies the soil moisture and water flow properties.

'e second factor explained about 10% of the total
variance with high positive loading from the OM indicator
(0.92) and moderate positive loading from CEC (0.55). 'e
second factor had also moderate negative loading from the
BD indicator (−0.47) and moderate positive loading from
the pH indicator (0.35). 'e second factor expresses the
effect of soil organic matter content on bulk density and soil
cation exchange capacity.

'e third factor explained about 9.6% of the total var-
iance with high positive loading from Slp (0.88) and Rlf
(0.85) indicators. 'is factor is a proxy of surface as it clearly
shows the effect of terrain on soil properties as they sig-
nificantly correlated.

'e fourth factor explained about 8% of the total vari-
ance with high positive loading from the CaCO3 indicator
(0.88) and moderate positive loading from CEC (0.67) in-
dicators. Also, the fourth factor has negative moderate
loading from the TWI indicator (−0.45) resulting from
significant correlations among CaCO3, CEC, and TWI. 'e
fourth factor expresses the interaction between CaCO3,
CEC, and soil wetness as where wetness occurs, the calcium
salts readily dissolved and interfere with soil exchangeable
cations [118, 119] and the presence of calcium carbonates is
associated with cascading changes in soil biogeochemistry
[120].

'e fifth factor explained about 8.8% of the total variance
with high positive loading from the EC indicator (0.81) and
ESP (0.79). 'is factor represents salinity characteristics.

'e Norm analyses (Table 6) revealed that, from eight
quality indicators in the first group, only the AWHC in-
dicator is with the highest Norm value. 'e OM indicator is
the only indicator in the second group, while Slp, CEC, and
EC indicators are the highest in the third, fourth, and fifth
group, respectively. According to these results, the mini-
mum dataset indicators include five soil and terrain quality
indicators which are AWHC, OM, Slp, CEC, and EC
indicators.

3.3. Soil Quality Assessment. 'e soil quality indices were
calculated and ranked for each method. 'e classification
criteria for the different calculated soil quality indices based on
the different scoring techniques show variation between quality
methods (A,W, andN), but there are slight similarities between
each quality scoring technique for the different quality calcu-
lation methods. 'e threshold grade values of the scoring
methods for each soil quality method were nearly the same
threshold range values although the threshold grades values for
the different scoring methods were not consistent.

Table 2: Descriptive statistics of soil and terrain indicators.

Indicator Mean SE Min Q1 Median Q3 Max
Sand 81.09 0.39 65.00 76.00 80.00 85.00 99.87
Silt 6.16 0.17 0.09 5.00 7.54 10.00 17.79
Clay 8.51 0.28 0.04 8.00 12.00 15.00 26.00
pH 7.38 0.02 7.00 7.16 7.24 7.50 8.20
EC 2.63 0.10 0.05 2.02 2.96 3.86 13.14
OM 0.22 0.01 0.01 0.14 0.21 0.37 1.50
ESP 6.43 0.16 1.00 4.51 6.92 9.98 13.46
CEC 2.13 0.10 0.02 1.46 2.32 3.16 11.71
CaCO3 1.95 0.13 0.04 1.44 2.63 4.20 17.22
FC 10.95 0.23 2.89 9.54 12.39 15.02 24.63
AWHC 5.40 0.06 2.86 4.89 5.60 6.35 8.61
BD 1.59 0.00 1.41 1.59 1.61 1.62 1.63
PD 1.69 0.00 1.42 1.67 1.72 1.75 1.84
Slp 5.90 0.22 0.54 4.09 6.32 9.89 24.11
Rlf 14.94 0.28 3.00 12.00 15.00 19.00 44.00
TWI 7.79 0.09 5.52 6.82 7.24 8.33 11.70
Kaiser–Meyer–Olkin measure
of sampling adequacy MSA 0.74

Bartlett’s test of
sphericity Approx. chi-square 16428.05

Df 120
Sig. 0.00

Mean is represented by geometric mean, SE is the standard error, Min is the
minimum value, Max is the maximum value, Q1 and Q3 are the lower and
upper quartiles, respectively.
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'e cross validation for comparing the different selected
interpolation ordinary kriging models identified the expo-
nential predictive model as the best accurate model for
representing the spatial distribution of soil quality indices
other than the other predictive models (data not shown).'e
distribution of soil quality indices (Table 7) shows a degree of
pattern similarity between soil quality indices across the
different quality grouping types with indicators scoring
functions.

Soil quality grade III (moderate) is mainly the largest area
percentage proportion in most soil quality indexing methods
and scoring functions across the three soil quality datasets
groups (TDS, MDS, and EDS) followed by grade II (High),
grade IV (low), grade I (very high), and grade V (very low),
respectively. A little part of the study area is for grades I (very
high) and V (very low) with area percentage coverage. Soil
quality grade III (moderate) on average accounts for 40% of the
study area, and soil quality grade II (high) accounts for 30% of
the study area, while the rest of soil quality grades (I, IV, and V)
accounts for 20% of the study area. 'e disparities between the
spatial distribution of soil qualities across indexingmethods and
scoring functions are of no large distribution disparity.

3.4. Comparison of Indices. Sensitivity analyses for soil
quality indices showed that the soil quality grouping type of
the indicator dataset, quality indexing method, and

indicators scoring function are impacting the soil quality
values in the study area (Table 8). 'e LLSF linear scoring
function is larger sensitive to the variation in soil quality
compared with other sensitivities for all indicator grouping
types, soil quality methods, and scoring functions specially
with the minimum dataset grouping type while SNLSF
nonlinear scoring function is the less sensitive to soil quality
variation.

Sensitivity analysis showed that both indexing and
dataset selection methods influenced the SQI values for the
various soil quality values. 'us, the analyses emphasize that
the indicator dataset grouping type, the indexing method,
and scoring function could assist in the evaluation of the soil
condition status in the study area. 'e Linear Scoring
Functions (LSFs) disclosed more soil quality variations
further than Nonlinear Scoring Functions (NLSFs). 'e
resulted sensitivity analyses agree with the results in [89]
where the Linear Scoring functions (LSFs) are more fa-
vorable than Nonlinear Scoring Functions (NLSFs) in
evaluating soil quality indices. It is in contrast with the work
in [15, 88] where it was reported that Nonlinear Scoring
Functions (NLSFs) are favorable in studies with one linear
and one nonlinear scoring functions, and their sensitivity
was not evaluated [89].

'e linear relationships between the indicator datasets
with different scoring functions and indices models (Table 9)
showed a significant correlation (P< 0.05). 'e values of the
linear relationships between MDS and TDS datasets are
higher than the values of the linear relationships between
EDS and TDS datasets across linear and nonlinear scoring
functions and index models. 'e values of the linear rela-
tionships between TDS and MDS datasets for the weighted
additive quality index are higher than the values of the linear
relationship for additive and Nemoro indexing methods for
all the linear and nonlinear scoring functions. In contrast,
the linear relationships between the TDS and EDS datasets
for the weighted additive quality index are mostly lower than

Table 3: Correlation matrix for measured soil and terrain attributes (n� 397).

Sand Silt Clay pH EC OM ESP CEC CaCO3 FC AWHC BD PD Slp Rlf
Sand 1.00
Silt −0.79 1.00
Clay −0.93 0.51 1.00
pH 0.70 −0.44 −0.72 1.00
EC −0.18 0.13 0.18 −0.27 1.00
OM 0.08 −0.09 −0.06 0.31 −0.03 1.00
ESP −0.05 0.00 0.06 −0.21 0.35 −0.20 1.00
CEC −0.04 0.03 0.04 0.27 0.02 0.45 −0.08 1.00
CaCO3 0.07 −0.05 −0.06 0.11 −0.04 0.15 −0.07 0.49 1.00
FC −0.96 0.59 0.99 −0.69 0.18 0.01 0.03 0.07 −0.06 1.00
AWHC −0.99 0.80 0.91 −0.64 0.18 0.02 0.00 0.09 −0.06 0.95 1.00
BD −0.83 0.59 0.81 −0.78 0.16 −0.54 0.17 −0.16 −0.10 0.78 0.74 1.00
PD −0.93 0.57 0.96 −0.79 0.18 −0.31 0.12 −0.06 −0.09 0.94 0.87 0.94 1.00
Slp 0.03 −0.04 −0.02 0.04 0.00 −0.01 −0.06 −0.03 −0.01 −0.02 −0.03 −0.03 −0.03 1.00
Rlf 0.04 −0.01 −0.04 0.10 −0.02 0.08 −0.11 0.08 0.06 −0.03 −0.02 −0.09 −0.06 0.51 1.00
TWI 0.06 −0.13 −0.01 0.00 0.06 −0.13 0.09 −0.14 −0.12 −0.03 −0.08 0.04 0.02 −0.14 −0.04
EC, electrical conductivity (dS m1); SOM, soil organic matter (%); ESP, exchangeable sodium percent (%); CEC, cation exchange capacity (cmol kg1); CaCO3,
calcium carbonates content (%); FC, field capacity water content (%); AWHC, available water holding capacity (%); BD, soil bulk density; PD, soil packing
density; Slp, slope (%); Rlf, relief (m), TWI, topographic wetness index.

Table 4: Eigenvalues, proportions and cumulative variance
explained by factor analysis using a correlation matrix of stan-
dardized soil and terrain indicator data.

Factor Eigenvalue Difference Proportion Cumulative
1 6.72 6.55 40.94 40.94
2 2.09 1.65 10.34 51.28
3 1.52 1.53 9.58 60.86
4 1.28 1.45 9.08 69.94
5 1.00 1.41 8.82 78.76
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the linear relationship values for additive and Nemoro
indexing methods except for LLSF and HLSF linear scoring
functions. 'e additive and weighted additive quality
models’ values are quite similar for the scoring function type
between the datasets.

'e MDS weighted additive soil quality index grades
with the LLSF scoring technique represented more soil
quality variation with R2 � 0.90 than the other soil qualities
indices (Figure 2) (other spatial distributions of the other soil
quality methods’ grade scoring techniques are not shown).

'e results of sensitivity analyses and linear rela-
tionships between the indicator datasets with different
scoring functions and index models point out that the
MDS indicator dataset with the weighted additive quality

model explains the soil quality indicators with the dif-
ferent quality models other than TDS and EDS indicator
datasets and could assist in monitoring the temporal
changes in soil quality of the region due to the increased
agricultural development. 'ese findings agreed with the
findings of the other studies in arid and semiarid regions
[36, 110, 121] where the MDS dataset with the weighted
additive soil quality model is better for evaluating soil
quality as the weighted additive model represents the
indicators of the soil quality rather than the additive and
Nemoro quality models [96, 108] and factor analyses
provide the most representing indicators and the weights
that differentiate the relative importance of soil quality
indicators for evaluating soil quality [63, 107].

Table 5: Proportion of variance using varimax rotation and communality estimates for soil and terrain indicators for each of the retained
factors.

Indicator Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Communality estimates
Sand −0.99 −0.02 0.01 −0.01 −0.03 0.99
Silt 0.74 0.02 0.00 0.05 −0.05 0.55
Clay 0.95 0.01 −0.01 −0.01 0.07 0.91
pH −0.74 0.35 0.04 0.10 −0.22 0.74
EC 0.17 0.13 0.05 −0.07 0.81 0.71
OM −0.09 0.92 0.03 0.09 −0.08 0.87
ESP 0.00 −0.23 −0.09 −0.02 0.79 0.68
CEC 0.03 0.55 −0.03 0.67 0.07 0.75
CaCO3 -0.08 0.03 −0.05 0.88 0.04 0.78
FC 0.97 0.09 −0.01 -0.01 0.05 0.96
AWHC 0.98 0.13 0.00 0.02 0.00 0.97
BD 0.85 −0.47 -0.04 0.00 0.10 0.95
PD 0.95 −0.23 −0.02 −0.01 0.09 0.96
Slp −0.02 −0.07 0.88 0.02 −0.02 0.78
Rlf −0.03 0.09 0.85 0.06 −0.02 0.73
TWI −0.07 0.01 −0.17 −0.45 0.21 0.28

Table 6: Included soil and terrain indicators in the minimum dataset from representative indicators.

Group Indicator Vector norm
Coefficient of
determination

Standard normal
transformation Indicator value Included

NDVI Elev Norm NDVI Elev
1 Sand 2.57 0.18 0.14 1.00 0.80 1.00 2.80 No
1 Silt 1.91 0.10 0.10 0.74 0.43 0.74 1.91 No
1 Clay 2.47 0.17 0.11 0.96 0.74 0.96 2.66 No
1 pH 2.01 0.02 0.01 0.78 0.11 0.78 1.67 No
1 FC 2.52 0.20 0.14 0.98 0.90 0.98 2.86 No
1 AWHC 2.54 0.23 0.17 0.99 1.00 0.99 2.97 Yes
1 BD 2.30 0.02 0.02 0.89 0.09 0.89 1.87 No
1 PD 2.48 0.09 0.07 0.96 0.39 0.96 2.32 No
2 OM 1.36 0.09 0.02 0.53 0.38 0.53 1.43 Yes
3 Slp 1.09 0.00 0.01 0.42 0.02 0.42 0.86 Yes
3 Rlf 1.06 0.00 0.01 0.41 0.01 0.41 0.83 No
4 CEC 1.10 0.00 0.01 0.43 0.02 0.43 0.87 Yes
4 CaCO3 1.02 0.00 0.00 0.40 0.01 0.40 0.80 No
5 EC 0.95 0.01 0.00 0.37 0.03 0.37 0.77 Yes
5 ESP 0.86 0.01 0.06 0.33 0.02 0.33 0.69 No
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Table 7: Distribution of index area grades across different soil quality index methods.

Indicator datasets SQI model Statistic
Soil quality grade

I (very high) II (high) III (moderate) IV (low) V (very low)

TDS

SQI-A
Min 0.00 13.81 29.73 12.34 0.12
Max 3.52 31.00 44.69 35.82 3.53
Mean 1.77 23.70 39.69 23.61 1.52

SQI-W
Min 2.80 18.00 37.77 3.31 0.00
Max 5.75 42.19 49.72 18.87 0.44
Mean 4.31 35.13 42.00 8.77 0.09

SQI-N
Min 0.00 16.89 36.26 12.11 0.11
Max 2.84 25.32 51.37 28.08 1.52
Mean 0.84 22.02 46.64 19.88 0.91

MDS

SQI-A
Min 0.00 13.93 19.48 0.17 0.00
Max 6.08 63.00 46.89 33.35 0.17
Mean 2.44 45.74 33.82 8.26 0.03

SQI-W
Min 0.01 12.04 29.75 0.40 0.00
Max 3.12 58.46 46.62 36.55 0.08
Mean 1.00 41.22 38.09 9.96 0.02

SQI-N
Min 0.00 1.94 18.28 0.00 0.00
Max 3.94 58.32 47.27 67.42 2.65
Mean 1.53 37.40 34.99 15.83 0.55

EDS

SQI-A
Min 0.00 13.20 31.68 13.11 0.00
Max 5.88 28.84 46.52 37.50 4.04
Mean 1.57 21.78 40.55 25.10 1.30

SQI-W
Min 0.00 12.54 37.38 12.64 0.00
Max 6.78 28.33 47.81 28.81 6.08
Mean 1.78 20.37 42.97 22.61 2.56

SQI-N
Min 0.00 9.14 38.78 16.33 0.00
Max 5.67 31.15 53.09 36.11 3.12
Mean 1.43 22.63 43.12 22.41 0.70

Table 8: Sensitivity analyses between indicator datasets, models, and scoring functions.

Indicator datasets SQI model
LSF NLSF

LLSF HLSF GLSF SNLSF GNLSF

TDS
SQI-A 2.48 1.77 1.62 1.39 2.14
SQI-W 3.68 3.19 1.85 1.53 2.68
SQI-N 2.52 1.89 1.82 1.69 2.14

MDS
SQI-A 4.66 3.13 3.31 2.52 2.63
SQI-W 4.87 4.43 3.49 2.54 3.11
SQI-N 4.44 3.43 3.23 3.18 3.52

EDS
SQI-A 3.61 2.58 2.21 2.02 3.38
SQI-W 3.94 3.72 2.46 2.42 2.83
SQI-N 3.38 3.06 3.28 2.19 3.09

Table 9: 'e linear relationships between indicator datasets with different scoring functions.

SQI Scoring method SQI model Relationship R2 SQI Scoring method SQI model Relationship R2

TDS-MDS

LLSF
SQI-A 0.4586x+ 0.3132 0.54

TDS-EDS

LLSF
SQI-A 0.4634x+ 0.2378 0.30

SQI-W 0.895x+ 0.0108 0.90 SQI-W 1.0574x− 0.1869 0.64
SQI-N 0.5027x+ 0.2111 0.51 SQI-N 0.4161x+ 0.1865 0.23

HLSF
SQI-A 0.3592x+ 0.2888 0.46

HLSF
SQI-A 0.4433x+ 0.2045 0.43

SQI-W 0.61x+ 0.0661 0.62 SQI-W 0.6876x− 0.0129 0.50
SQI-N 0.2621x+ 0.1909 0.49 SQI-N 0.5026x+ 0.1393 0.42

GLSF SQI-A 0.3725x+ 0.2409 0.42
GLSF

SQI-A 0.4703x+ 0.15 0.39
SQI-W 0.4989x+ 0.0665 0.51 SQI-W 0.5191x+ 0.0143 0.31
SQI-N 0.4239x+ 0.161 0.41 SQI-N 0.5284x+ 0.0997 0.39

SNLSF SQI-A 0.3487x+ 0.321 0.42
SNLSF

SQI-A 0.3989x+ 0.2996 0.50
SQI-W 0.4977x+ 0.1489 0.48 SQI-W 0.4134x+ 0.1926 0.32
SQI-N 0.3606x+ 0.2319 0.39 SQI-N 0.4391x+ 0.2081 0.50

GNLSF SQI-A 0.3088x+ 0.2933 0.24
GNLSF

SQI-A 0.3612x+ 0.2166 0.44
SQI-W 0.3884x+ 0.151 0.39 SQI-W 0.1992x+ 0.185 0.11
SQI-N 0.3341x+ 0.1981 0.24 SQI-N 0.3517x+ 0.1559 0.42
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4. Conclusions

'e objectives of this study were to (1) assess the soil quality
using three types of indicator datasets (TDS, MDS, and
EDS), three types of linear scoring functions, two types of
nonlinear scoring functions, and three soil quality index
models (additive, weighted additive, and Nemoro quality
indices) and (2) find the most suitable indicator method and
soil quality index model for the studied region with sensi-
tivity and linear relationship statistical analyses.

'e findings of the study indicate the following:

(i) Factor analyses are an efficient tool to reduce the
number of quality indicators for soil quality as-
sessment, thus reducing the time and cost of
sampling and analyses; also, it may improve soil
quality assessment by increasing the sampling
density. Exterior environmental variables are

commensurate directly to soil quality. Factor ana-
lyses and exterior environmental variables identified
five soil and terrain indicators, AWHC, OM, Slp,
CEC, and EC indicators, to be included in the MDS
dataset.

(ii) 'e linear scoring functions are more favorable than
nonlinear scoring functions in reflecting the soil
system functions. Although there was a variation
between soil quality models (A, W, and N) based on
the different scoring functions, for each scoring
function, there were slight similarities across the
quality models.

(iii) Grade III (moderate) soil quality grade is mainly the
largest area percentage proportion across the three
soil quality dataset groups (TDS, MDS, and EDS).
'e distribution disparity between resulted soil
qualities is low with a degree of pattern similarity.
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Figure 2: Spatial distribution of MDS weighted additive soil quality index with the LLSF scoring technique.
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(iv) 'e MDS indicator dataset derived from factor
analyses with the weighted additive quality model
and LLSF scoring function was the most sensitive to
assess soil quality as it is suitable to represent the
TDS and explain the soil quality indicators.

Based on the study findings, the researchers conclude
that the selection of a minimum dataset of quality indicators
in addition to inexpensive ancillary data is more beneficial,
especially using remote sensing data and digital elevation
models, for representing a sufficient soil quality index than
using a more complex dataset. Moreover, the MDS approach
is more advantageous in Egypt as a developing country
where the requirements for soil quality assessment must be
unpretentious and inexpensive to be adopted. 'e studied
area is under reclamation and cultivated during the last two
decades as a directive by the country to increase the agri-
cultural areas and meet the increasing food requirements.
Land degradation processes may be triggered as long-term
cultivation continued coupled with improper land utiliza-
tion. According to that, the results of the study could be
significantly used as a starting strategy for future research to
monitor the temporal changes in soil quality and utilization
planning.

Data Availability

'edata used to support the findings of this study are as follows:
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